I run Redline 5w-20 synthetic oil in my 2014 Ram with the Pentastar V-6 and I use the OEM oil filter.
I also follow the change it at 10,000 miles or one year.
Redline is expensive oil but it is also a Group 5 synthetic and I like the advantages that a group 5 synthetic provides for better ware protection.Group 5 synthetics are made up of esters while Group 4 synthetics are made up of PAO's.
Ester Chemistry
In many ways esters are very similar to the more commonly known and used synthetic hydrocarbons or PAOs. Like PAOs, esters are synthesized from relatively pure and simple starting materials to produce predetermined molecular structures designed specifically for high performance lubrication. Both types of synthetic basestocks are primarily branched hydrocarbons which are thermally stable, have high viscosity indices, and lack the undesirable and unstable impurities found in conventional petroleum based oils. The primary structural difference between esters and PAOs is the presence of oxygen in the hydrocarbon molecules in the form of multiple ester linkages (COOR) which impart polarity to the molecules. This polarity affects the way esters behave as lubricants in the following ways:
Volatility: The polarity of the ester molecules causes them to be attracted to one another and this intermolecular attraction requires more energy (heat) for the esters to transfer from a liquid to a gaseous state. Therefore, at a given molecular weight or viscosity, the esters will exhibit a lower vapor pressure which translates into a higher flash point and a lower rate of evaporation for the lubricant. Generally speaking, the more ester linkages in a specific ester, the higher its flash point and the lower its volatility.
Lubricity: Polarity also causes the ester molecules to be attracted to positively charged metal surfaces. As a result, the molecules tend to line up on the metal surface creating a film which requires additional energy (load) to wipe them off. The result is a stronger film which translates into higher lubricity and lower energy consumption in lubricant applications.
Detergency/Dispersency: The polar nature of esters also makes them good solvents and dispersants. This allows the esters to solubilize or disperse oil degradation by-products which might otherwise be deposited as varnish or sludge, and translates into cleaner operation and improved additive solubility in the final lubricant.
Biodegradability: While stable against oxidative and thermal breakdown, the ester linkage provides a vulnerable site for microbes to begin their work of biodegrading the ester molecule. This translates into very high biodegradability rates for ester lubricants and allows more environmentally friendly products to be formulated.
Another important difference between esters and PAOs is the incredible versatility in the design of ester molecules due to the high number of commercially available acids and alcohols from which to choose. For example, if one is seeking a 6 cSt synthetic basestock, the choices available with PAOs are a straight cut 6 cSt or a “dumbbell” blend of a lighter and heavier PAO. In either case, the properties of the resulting basestock are essentially the same. With esters, literally dozens of 6 cSt products can be designed each with a different chemical structure selected for the specific desired property. This allows the “ester engineer” to custom design the structure of the ester molecules to an optimized set of properties determined by the end customer or application. The performance properties that can be varied in ester design include viscosity, viscosity index, volatility, high temperature coking tendencies, biodegradability, lubricity, hydrolytic stability, additive solubility, and seal compatibility.